Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1011981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354122

RESUMO

Lysosomes are acidic organelles that mediate the degradation and recycling of cellular waste materials. Damage to lysosomes can cause lysosomal membrane permeabilization (LMP) and trigger different types of cell death, including apoptosis. Newcastle disease virus (NDV) can naturally infect most birds. Additionally, it serves as a promising oncolytic virus known for its effective infection of tumor cells and induction of intensive apoptotic responses. However, the involvement of lysosomes in NDV-induced apoptosis remains poorly understood. Here, we demonstrate that NDV infection profoundly triggers LMP, leading to the translocation of cathepsin B and D and subsequent mitochondria-dependent apoptosis in various tumor and avian cells. Notably, the released cathepsin B and D exacerbate NDV-induced LMP by inducing the generation of reactive oxygen species. Additionally, we uncover that the viral Hemagglutinin neuraminidase (HN) protein induces the deglycosylation and degradation of lysosome-associated membrane protein 1 (LAMP1) and LAMP2 dependent on its sialidase activity, which finally contributes to NDV-induced LMP and cellular apoptosis. Overall, our findings elucidate the role of LMP in NDV-induced cell apoptosis and provide novel insights into the function of HN during NDV-induced LMP, which provide innovative approaches for the development of NDV-based oncolytic agents.


Assuntos
Proteína HN , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/metabolismo , Proteína HN/metabolismo , Catepsina B , Apoptose , Lisossomos/metabolismo
2.
PLoS Pathog ; 20(2): e1012027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377149

RESUMO

Newcastle disease virus (NDV) has been extensively studied as a promising oncolytic virus for killing tumor cells in vitro and in vivo in clinical trials. However, the viral components that regulate the oncolytic activity of NDV remain incompletely understood. In this study, we systematically compared the replication ability of different NDV genotypes in various tumor cells and identified NP protein determines the oncolytic activity of NDV. On the one hand, NDV strains with phenylalanine (F) at the 450th amino acid position of the NP protein (450th-F-NP) exhibit a loss of oncolytic activity. This phenotype is predominantly associated with genotype VII NDVs. In contrast, the NP protein with a leucine amino acid at this site in other genotypes (450th-L-NP) can facilitate the loading of viral mRNA onto ribosomes more effectively than 450th-F-NP. On the other hand, the NP protein from NDV strains that exhibit strong oncogenicity interacts with eIF4A1 within its 366-489 amino acid region, leading to the inhibition of cellular mRNA translation with a complex 5' UTR structure. Our study provide mechanistic insights into how highly oncolytic NDV strains selectively promote the translation of viral mRNA and will also facilitate the screening of oncolytic strains for oncolytic therapy.


Assuntos
Vírus da Doença de Newcastle , Vírus Oncolíticos , Animais , Vírus da Doença de Newcastle/genética , Aminoácidos , Leucina , Vírus Oncolíticos/genética , RNA Mensageiro/genética , Biossíntese de Proteínas
3.
Virol Sin ; 39(1): 97-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103645

RESUMO

Influenza A virus (IAV) continues to pose a pandemic threat to public health, resulting a high mortality rate annually and during pandemic years. Posttranslational modification of viral protein plays a substantial role in regulating IAV infection. Here, based on immunoprecipitation (IP)-based mass spectrometry (MS) and purified virus-coupled MS, a total of 89 phosphorylation sites distributed among 10 encoded viral proteins of IAV were identified, including 60 novel phosphorylation sites. Additionally, for the first time, we provide evidence that PB2 can also be acetylated at site K187. Notably, the PB2 S181 phosphorylation site was consistently identified in both IP-based MS and purified virus-based MS. Both S181 and K187 are exposed on the surface of the PB2 protein and are highly conserved in various IAV strains, suggesting their fundamental importance in the IAV life cycle. Bioinformatic analysis results demonstrated that S181E/A and K187Q/R mimic mutations do not significantly alter the PB2 protein structure. While continuous phosphorylation mimicked by the PB2 S181E mutation substantially decreases viral fitness in mice, PB2 K187Q mimetic acetylation slightly enhances viral virulence in mice. Mechanistically, PB2 S181E substantially impairs viral polymerase activity and viral replication, remarkably dampens protein stability and nuclear accumulation of PB2, and significantly weakens IAV-induced inflammatory responses. Therefore, our study further enriches the database of phosphorylation and acetylation sites of influenza viral proteins, laying a foundation for subsequent mechanistic studies. Meanwhile, the unraveled antiviral effect of PB2 S181E mimetic phosphorylation may provide a new target for the subsequent study of antiviral drugs.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virulência , Fosforilação , Vírus da Influenza A/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
4.
Vet Res ; 54(1): 92, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848995

RESUMO

The haemagglutinin-neuraminidase (HN) protein plays a crucial role in the infectivity and virulence of Newcastle disease virus (NDV). In a previous study, the mutant HN protein was identified as a crucial virulence factor for the velogenic variant NDV strain JS/7/05/Ch, which evolved from the prototypic vaccine strain Mukteswar. Furthermore, macrophages are the main susceptible target cells of NDV. However, the possible involvement of cellular molecules in viral infectivity remains unclear. Herein, we elucidate the crucial role of vimentin, an intermediate filament protein, in regulating NDV infectivity through targeting of the HN protein. Using LC‒MS/MS mass spectrometry and coimmunoprecipitation assays, we identified vimentin as a host protein that differentially interacted with prototypic and mutant HN proteins. Further analysis revealed that the variant NDV strain induced more significant rearrangement of vimentin fibres compared to the prototypic NDV strain and showed an interdependence between vimentin rearrangement and virus replication. Notably, these mutual influences were pronounced in HD11 chicken macrophages. Moreover, vimentin was required for multiple infection processes of the variant NDV strain in HD11 cells, including viral internalization, fusion, and release, while it was not necessary for those of the prototypic NDV strain. Collectively, these findings underscore the pivotal role of vimentin in NDV infection through targeting of the HN protein, providing novel targets for antiviral treatment strategies for NDV.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/fisiologia , Proteína HN/genética , Vimentina/genética , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária , Galinhas
5.
Int J Biol Macromol ; 249: 126089, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37532184

RESUMO

As an important structural protein in virion morphogenesis, the matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to be a nuclear-cytoplasmic trafficking protein and plays essential roles in viral assembly and budding. In recent years, increasing lines of evidence have indicated that the M protein has obvious influence on the pathotypes of NDV, and the interaction of M protein with cellular proteins is also closely associated with the replication and pathogenicity of NDV. Although substantial progress has been made in the past 40 years towards understanding the structure and function of NDV M protein, the available information is scattered. Therefore, this review article summarizes and updates the research progress on the structural feature, virulence and pathotype correlation, and nucleocytoplasmic transport mechanism of NDV M protein, as well as the functions of M protein and cellular protein interactions in M's intracellular localization, viral RNA synthesis and transcription, viral protein synthesis, viral immune evasion, and viral budding and release, which will provide an in-depth understanding of the biological functions of M protein in the replication and pathogenesis of NDV, and also contribute to the development of effective antiviral strategies aiming at blocking the early or late steps of NDV lifecycles.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Humanos , Vírus da Doença de Newcastle/genética , Replicação Viral , Galinhas , Montagem de Vírus
6.
Animals (Basel) ; 13(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37444037

RESUMO

Long-term evolution of Newcastle disease virus (NDV) results in substantial alteration in viral pathogenesis. NDVs of genotype VII, a late genotype, show marked tropism to lymphoid tissues, especially to macrophages in chickens. However, the role of macrophages in the pathogenesis of genotype VII NDV is still unclear. Herein, NDV infectivity in macrophages and the role of macrophages in the pathogenesis of genotype VII NDV in chickens were investigated. We reported that NDV strains of genotype VII (JS5/05) and IV (Herts/33) can replicate in the adherent (predominantly macrophages) and non-adherent cells (predominantly lymphocytes) derived from chicken peripheral blood mononuclear cells (PBMCs), and significantly higher virus gene copy was detected in the adherent cells. In addition, JS5/05 had significantly higher infectivity in PBMC-derived adherent cells than Herts/33, correlating with its enhanced tropism to macrophages in the spleen of chickens. Interestingly, the depletion of 68% of macrophages exerted no significant impact on clinical signs, mortality and the systematic replication of JS5/05 in chickens, which may be associated with the contribution of non-depleted macrophages and other virus-supportive cells to virus replication. Macrophage depletion resulted in a marked exacerbation of tissue damage and apoptosis in the spleen caused by JS5/05. These findings indicated that macrophages play a critical role in alleviating tissue damage caused by genotype VII NDV in chickens. Our results unveiled new roles of macrophages in NDV pathogenesis in chickens.

7.
Antiviral Res ; 215: 105637, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196902

RESUMO

Emerging evidence has demonstrated the critical role of long noncoding RNAs (lncRNAs) in regulating gene expression. However, the functional significance and mechanisms underlying influenza A virus (IAV)-host lncRNA interactions are still elusive. Here, we identified a functional lncRNA, LncRNA#61, as a broad anti-IAV factor. LncRNA#61 is highly upregulated by different subtypes of IAV, including human H1N1 virus and avian H5N1 and H7N9 viruses. Furthermore, nuclear-enriched LncRNA#61 can translocate from the nucleus to the cytoplasm soon after IAV infection. Forced LncRNA#61 expression dramatically impedes viral replication of various subtypes of IAV, including human H1N1 virus and avian H3N2/N8, H4N6, H5N1, H6N2/N8, H7N9, H8N4, H10N3, H11N2/N6/N9 viruses. Conversely, abolishing LncRNA#61 expression substantially favored viral replication. More importantly, LncRNA#61 delivered by the lipid nanoparticle (LNP)-encapsulated strategy shows good performance in restraining viral replication in mice. Interestingly, LncRNA#61 is involved in multiple steps of the viral replication cycle, including virus entry, viral RNA synthesis and the virus release period. Mechanistically, the four long ring arms of LncRNA#61 mainly mediate its broad antiviral effect and contribute to its inhibition of viral polymerase activity and nuclear aggregation of key polymerase components. Therefore, we defined LncRNA#61 as a potential broad-spectrum antiviral factor for IAV. Our study further extends our understanding of the stunning and unanticipated biology of lncRNAs as well as their close interaction with IAV, providing valuable clues for developing novel broad anti-IAV therapeutics targeting host lncRNAs.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , RNA Longo não Codificante , Animais , Humanos , Camundongos , Antivirais/farmacologia , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/farmacologia , Replicação Viral
8.
Avian Pathol ; 52(2): 89-99, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36571394

RESUMO

Duck viral hepatitis (DVH), mainly caused by duck hepatitis A virus (DHAV), is a highly fatal and rapidly spreading infectious disease of young ducklings that seriously jeopardizes the duck industry worldwide. DHAV type 1 (DHAV-1) is the main genotype responsible for disease outbreaks since 1945, and the disease situation is complicated by the emergence and dissemination of a novel genotype (DHAV-3) in some countries in Asia and Africa. Live attenuated DHAV vaccines are widely used to induce a considerable degree of protection in ducklings. Breeder ducks are immunized with inactivated or/and live DHAV vaccines to achieve satisfactory levels of passive immunity in progeny. In addition, novel characteristics of virus transmission, pathogenicity and pathogenesis of DHAV were recently characterized, necessitating the development of new vaccines and effective vaccination programmes against DVH. Therefore, a systematic dissection of the profiles, strengths and shortcomings of the available DHAV vaccines is essential. Moreover, to further increase the efficiency of vaccine production and administration, the development of next-generation DHAV vaccines using cutting-edge technologies is also required. In this review, based on a comprehensive summary of the research advances in the epidemiology, pathogenicity, and genomic features of DHAV, we focus on reviewing and analysing the features of the commercial and experimental DHAV vaccines. We also propose perspectives for disease control based on the specific disease situations in different countries. This review provides essential information for vaccine development and disease control of DVH.


Assuntos
Vírus da Hepatite do Pato , Hepatite Viral Animal , Infecções por Picornaviridae , Doenças das Aves Domésticas , Animais , Infecções por Picornaviridae/veterinária , Vacinas Atenuadas , Vacinação/veterinária , Patos
9.
Appl Biochem Biotechnol ; 195(3): 2077-2092, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36417109

RESUMO

Fc-fusion proteins (FCPs), a new generation biological medicine, have revolutionized the practice of medicines that treat diseases. However, complex manufacturing techniques are required for FCP production, casting the affordability and accessibility issues in low- and middle-income economies (LMIEs). Virus-vectored system may serve as a simple and cost-effective platform for FCP delivery. As a proof-of-concept study, Newcastle disease virus (NDV), a widely-used vector for vaccine generation, was used as a vector to express and deliver a model FCP composed of the hemagglutinin (HA) and IgG Fc. A recombinant NDV expressing the HA-Fc fusion protein was generated using reverse genetics, which had comparable replication and virulence to the parental virus. High levels of expression of soluble HA-Fc were detected in cell culture and embryonated chicken eggs inoculated with the recombinant NDV. In addition, the recombinant NDV replicated in the lung of mouse, delivering the HA-Fc protein to this organ. The HA-Fc expressed by NDV specifically bound to murine FcγRI, which was dependent on the presence of the Fc tag. The recombinant NDV induced high vector-specific antibody response, whereas it failed to elicit H7N9-specific antibody immunity in mice. The absence of HA-specific antibodies may be attributed to deficient incorporation of the HA-Fc protein into NDV virion particles. Our results indicated that NDV may be potentially used as a vector for FCP expression and delivery. This strategy may help to enhance the affordability and equal accessibility of FCP biological medicines, especially in LIMEs.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Doença de Newcastle , Vacinas Virais , Animais , Camundongos , Vírus da Doença de Newcastle/genética , Influenza Aviária/prevenção & controle , Galinhas , Proteínas Recombinantes/genética , Anticorpos , Doença de Newcastle/prevenção & controle , Vacinas Virais/genética , Anticorpos Antivirais
10.
Vet Res ; 53(1): 99, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435802

RESUMO

Newcastle disease (ND) is one of the most economically devastating infectious diseases affecting the poultry industry. Virulent Newcastle disease virus (NDV) can cause high mortality and severe tissue lesions in the respiratory, gastrointestinal, neurological, reproductive and immune systems of poultry. Tremendous progress has been made in preventing morbidity and mortality caused by ND based on strict biosecurity and wide vaccine application. In recent decades, the continual evolution of NDV has resulted in a total of twenty genotypes, and genetic variation may be associated with disease outbreaks in vaccinated chickens. In some countries, the administration of genotype-matched novel vaccines in poultry successfully suppresses the circulation of virulent NDV strains in the field. However, virulent NDV is still endemic in many regions of the world, especially in low- and middle-income countries, impacting the livelihood of millions of people dependent on poultry for food. In ND-endemic countries, although vaccination is implemented for disease control, the lack of genotype-matched vaccines that can reduce virus infection and transmission as well as the inadequate administration of vaccines in the field undermines the effectiveness of vaccination. Dissection of the profiles of existing ND vaccines is fundamental for establishing proper vaccination regimes and developing next-generation vaccines. Therefore, in this article, we provide a broad review of commercial and experimental ND vaccines and promising new platforms for the development of next-generation vaccines.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Vírus da Doença de Newcastle , Aves Domésticas
11.
Viruses ; 14(11)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36366435

RESUMO

As a multifunctional protein, the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is involved in various biological functions. A velogenic genotype III NDV JS/7/05/Ch evolving from the mesogenic vaccine strain Mukteswar showed major amino acid (aa) mutations in the HN protein. However, the precise biological significance of the mutant HN protein remains unclear. This study sought to investigate the effects of the mutant HN protein on biological activities in vitro and in vivo. The mutant HN protein (JS/7/05/Ch-type HN) significantly enhanced the hemadsorption (HAd) and fusion promotion activities but impaired the neuraminidase (NA) activity compared with the original HN protein (Mukteswar-type HN). Notably, A494D and E495K in HN exhibited a synergistic role in regulating biological activities. Moreover, the mutant HN protein, especially A494D and E495K in HN, enhanced the F protein cleavage level, which can contribute to the activation of the F protein. In vitro infection assays further showed that NDVs bearing A494D and E495K in HN markedly impaired the cell viability. Simultaneously, A494D and E495K in HN enhanced virus replication levels at the early stage of infection but weakened later in infection, which might be associated with the attenuated NA activity and cell viability. Furthermore, the animal experiments showed that A494D and E495K in HN enhanced case fatality rates, virus shedding, virus circulation, and histopathological damages in NDV-infected chickens. Overall, these findings highlight the importance of crucial aa mutations in HN in regulating biological activities of NDV and expand the understanding of the enhanced pathogenicity of the genotype III NDV.


Assuntos
Proteína HN , Vírus da Doença de Newcastle , Animais , Proteína HN/química , Neuraminidase/genética , Neuraminidase/metabolismo , Hemaglutininas , Galinhas , Genótipo , Mutação
12.
Virus Genes ; 58(5): 414-422, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35751792

RESUMO

Newcastle disease virus (NDV) is an important pathogen for poultry and is used as a vector for developing novel poultry vaccines. Previous studies showed that foreign gene insertion in NDV vector decreases virulence determined by in vitro assays; however, the impact of foreign gene expression on the pathogenicity of NDV in susceptible chickens is not fully investigated. In this study, a recombinant NDV based on a velogenic strain carrying the orange fluorescent protein (OFP) gene between the phosphoprotein (P) and matrix (M) genes was generated using reverse genetics. Biological characteristics, including virus replication, virulence, and OFP expression, and the pathogenicity in chickens were evaluated. The recombinant NDV showed comparable replication capacity in eggs and cells as the parental virus, whereas OFP insertion resulted in a mild impairment of virulence, evidenced by longer mean death time in embryos. High OFP expression was detected in the cells inoculated with the recombinant NDV. In addition, the recombinant NDV induced delayed onset of disease, lower severity of clinical signs, and lower mortality in chickens compared to the parental virus. Moreover, high titers of the parental virus were detected in the spleen, lung, and intestinal tract, while no recombinant NDV was recovered from these tissues. Our findings suggest that in vitro characteristics related to the insertion of the OFP gene in a virulent NDV do not correlate to alteration of the pathogenicity in chickens. Our results provided new information regarding assessment of the impact of foreign gene expression on the pathogenicity of NDV.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Expressão Gênica , Vírus da Doença de Newcastle , Fosfoproteínas/genética , Vacinas Virais/genética
13.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632659

RESUMO

Commercial inactivated vaccines against H9N2 avian influenza (AI) have been developed in China since 1990s and show excellent immunogenicity with strong HI antibodies. However, currently approved vaccines cannot meet the clinical demand for a live-vectored vaccine. Newcastle disease virus (NDV) vectored vaccines have shown effective protection in chickens against H9N2 virus. However, preexisting NDV antibodies may affect protective efficacy of the vaccine in the field. Here, we explored avian paramyxovirus serotype 2 (APMV-2) as a vector for developing an H9N2 vaccine via intranasal delivery. APMV-2 belongs to the same genus as NDV, distantly related to NDV in the phylogenetic tree, based on the sequences of Fusion (F) and hemagglutinin-neuraminidase (HN) gene, and has low cross-reactivity with anti-NDV antisera. We incorporated hemagglutinin (HA) of H9N2 into the junction of P and M gene in the APMV-2 genome by being flanked with the gene start, gene end, and UTR of each gene of APMV-2-T4 to generate seven recombinant APMV-2 viruses rAPMV-2/HAs, rAPMV-2-NPUTR-HA, rAPMV-2-PUTR-HA, rAPMV-2-FUTR-HA, rAPMV-2-HNUTR-HA, rAPMV-2-LUTR-HA, and rAPMV-2-MUTR-HA, expressing HA. The rAPMV-2/HAs displayed similar pathogenicity compared with the parental APMV-2-T4 virus and expressed HA protein in infected CEF cells. The NP-UTR facilitated the expression and secretion of HA protein in cells infected with rAPMV-2-NPUTR-HA. Animal studies demonstrated that immunization with rAPMV-2-NPUTR-HA elicited effective H9N2-specific antibody (6.14 ± 1.2 log2) responses and conferred complete immune protection to prevent viral shedding in the oropharyngeal and cloacal swabs from chickens challenged with H9N2 virus. This study suggests that our recombinant APMV-2 virus is safe and immunogenic and can be a useful tool in the combat of H9N2 outbreaks in chicken.


Assuntos
Avulavirus , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Galinhas , Hemaglutininas , Imunização , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Doença de Newcastle/genética , Filogenia , Sorogrupo , Vacinas Atenuadas , Vacinas Sintéticas/genética
14.
Avian Pathol ; 51(4): 330-338, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35297704

RESUMO

H7N9 subtype avian influenza virus (AIV) is endemic in poultry in China, and vaccination is used as the primary strategy for disease control. However, by current serological tests, monitoring H7N9 virus infection in vaccinated poultry is difficult because vaccine-induced antibodies are not readily distinguishable from field viruses. Therefore, a test differentiating infected and vaccinated animals (DIVA) is critical for monitoring H7N9 virus. However, no DIVA test is available for the H7N9 subtype AIV. This study investigated the potential of an epitope (peptide 11) spanning the haemagglutinin (HA) cleavage site as a DIVA antigen for the H7N9 virus. The results showed that the H7N9 virus infection sera and post-challenge sera obtained from H7N9-vaccinated chickens reacted with peptide 11, whereas the sera elicited by inactivated and viral-vectored H7N9 vaccines had no reactivity with this peptide. Peptide 11 was further split into two peptides at the HA cleavage site, and the truncated peptides failed to discriminate H7N9 infected and vaccinated chickens. Peptide 11 is located in a main surface loop in the HA protein, and contains highly conserved residues in the HA cleavage site among the H7N9 subtype and different subtypes of groups 1 and 2, suggesting the potential of this peptide as a broad DIVA antigen for influenza viruses. Our study highlighted that peptide 11 is a promising DIVA antigen, and serological tests based on this peptide may serve as useful tools for monitoring H7N9 virus infection in vaccinated poultry. RESEARCH HIGHLIGHTSThe epitope spanning the HA cleavage site is a potential DIVA antigen for H7N9 AIV.The epitope reacted with LP and HP H7N9 viruses.The epitope has potential as a broad DIVA antigen for influenza viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Doenças das Aves Domésticas , Animais , Anticorpos Antivirais , Formação de Anticorpos , Galinhas , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Peptídeos , Aves Domésticas
15.
Sheng Wu Gong Cheng Xue Bao ; 38(1): 160-173, 2022 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-35142127

RESUMO

The conserved hemagglutinin (HA) stem region of avian influenza virus (AIV) is an important target for designing broad-spectrum vaccines, therapeutic antibodies and diagnostic reagents. Previously, we obtained a monoclonal antibody (mAb) (5D3-1B5) which was reactive with the HA stem epitope (aa 428-452) of H7N9 subtype AIV. To systematically characterize the mAb, we determined the antibody titers, including the HA-binding IgG, hemagglutination-inhibition (HI) and virus neutralizing (VN) titers. In addition, the antigenic epitope recognized by the antibody as well as the sequence and structure of the antibody variable region (VR) were also determined. Moreover, we evaluated the cross-reactivity of the antibody with influenza virus strains of different subtypes. The results showed that the 5D3-1B5 antibody had undetectable HI and VN activities against H7N9 virus, whereas it exhibited strong reactivity with the HA protein. Using the peptide-based enzyme-linked immunosorbent assay and biopanning with a phage-displayed random peptide library, a motif with the core sequence (431W-433Y-437L) in the C-helix domain in the HA stem was identified as the epitope recognized by 5D3-1B5. Moreover, the mAb failed to react with the mutant H7N9 virus which contains mutations in the epitope. The VR of the antibody was sequenced and the complementarity determining regions in the VR of the light and heavy chains were determined. Structural modeling and molecular docking analysis of the VR verified specific binding between the antibody and the C-helix domain of the HA stem. Notably, 5D3-1B5 showed a broad cross-reactivity with influenza virus strains of different subtypes belonging to groups 1 and 2. In conclusion, 5D3-1B5 antibody is a promising candidate in terms of the development of broad-spectrum virus diagnostic reagents and therapeutic antibodies. Our findings also provided new information for understanding the epitope characteristics of the HA protein of H7N9 subtype AIV.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Simulação de Acoplamento Molecular
16.
Protein Expr Purif ; 192: 106046, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35007721

RESUMO

Production of broadly-reactive antibodies is critical for universal immunodiagnosis of rapidly-evolving influenza viruses. Most monoclonal antibodies (mAbs) are generated in mice using the hybridoma technology which involves labor- and time-consuming screening and low yield issues. In this study, a recombinant antibody based on a broadly-reactive mAb against the hemagglutinin (HA) stalk of H7N9 avian influenza virus was expressed in CHO cells and its biological characteristics, cross-reactivity and epitope recognition were identified. The variable genes of the parental antibody were amplified and cloned into the antibody-expressing plasmids containing the constant genes of murine IgG1. The recombinant antibody was expressed in high yield and purity in CHO cells and showed similar features to the parental antibody, including negative hemagglutination inhibition activity against H7N9 virus and high binding activity with the H7N9 HA protein. Notably, the recombinant antibody exhibited a broad reactivity with different influenza subtypes belonging to group 1 and group 2, which was associated with its recognition of a highly-conserved epitope in the stalk, as observed for the parental antibody. Our results suggest that cell-based antibody expression system can be utilized as an important alternative to the hybridoma technology for antibody production for influenza virus diagnostics.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Orthomyxoviridae/efeitos dos fármacos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/genética , Anticorpos Antivirais/isolamento & purificação , Células CHO , Cricetinae , Cricetulus , Reações Cruzadas , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/virologia , Camundongos , Orthomyxoviridae/classificação , Orthomyxoviridae/imunologia
17.
Vet Microbiol ; 264: 109306, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923247

RESUMO

Currently, highly pathogenic avian influenza (HPAI) H7N9 viruses still pose a potential pandemic threat. Influenza virus-like particle (VLP) is one of the most promising vaccine strategies to complement traditional egg-dependent vaccines. Here, we generated a H7N9 VLP vaccine candidate by baculovirus expression system and evaluated its efficacy in chickens and mice. The H7N9 VLP was produced through co-infection of Sf9 insect cells with three recombinant baculoviruses expressing individual HA, NA and M1 gene of the HPAI H7N9 virus A/chicken/Guangdong/GD15/2016. Intramuscular immunization of the H7N9 VLP elicited robust antibody immune responses and conferred complete clinical protection against lethal H7N9 virus challenge both in chickens and mice. Meanwhile, H7N9 VLP significantly restrained virus shedding and dramatically alleviated pulmonary lesions caused by H7N9 virus infection in birds and mice. Interestingly, chicken antibodies induced by the H7N9 VLP also had a good cross-reactivity with H7N9 field strains isolated in different years. In addition, vaccination with the H7N9 VLP elicited high T cell immunity in mouse lung, evidenced by significantly upregulated expression of IL-2, IL-4 and IFN-γ. Furthermore, the H7N9 VLP significantly decreased the expression of some key inflammatory cytokines, such as IL6, RANTES and TNF-α in mouse lung, which may partially account for its contribution to alleviate lung pathology. Therefore, our study describes the good efficacy of the HA + NA + M1-containing H7N9 VLP both in chicken and mice models, highlighting the potential of VLP-based vaccine as a critical alternative of traditional egg-based vaccine for control of H7N9 influenza virus in both humans and poultry.


Assuntos
Baculoviridae , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Infecções por Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Animais , Anticorpos Antivirais/sangue , Baculoviridae/imunologia , Galinhas , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/imunologia
18.
Transbound Emerg Dis ; 69(4): 2076-2088, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34213072

RESUMO

Pigeon paramyxovirus type 1 (PPMV-1) is an antigenic variant of Newcastle disease virus (NDV) which is mainly associated with infections of pigeons and has the potential to result in disease in chickens. In this study, we characterised 21 PPMV-1 isolates from diseased pigeons in China during 2007-2019. Phylogenetic analysis revealed that all isolates belonged to genotype VI. Among them, most isolates belonged to sub-genotype VI.2.1.1.2.2, suggesting that VI.2.1.1.2.2 has become a prevalent genotype in pigeons in China. The results showed that all PPMV-1 isolates were mesogenic in nature according to the mean death time (MDT) and intracerebral pathogenicity index (ICPI). In vitro and in vivo studies demonstrated that two genetically closely related isolates (Pi-11 and Pi-10) both of which belonged to sub-genotype VI.2.1.1.2.2 had similar replication kinetics in cells derived from pigeons, while the replication titre of Pi-11 was significantly higher than that of Pi-10 in cells derived from chickens. Pi-11 and Pi-10 could contribute to morbidity and mortality in pigeons. Remarkably, although the two viruses resulted in no apparent disease symptom in chickens, Pi-11 could cause more severe histopathological lesions and had a stronger replication ability in chickens compared to Pi-10. Moreover, chickens infected with Pi-11 had higher shedding efficiency than chickens infected with Pi-10. Additionally, several mutations within important functional regions of the fusion (F) and haemagglutinin-neuraminidase (HN) proteins might be associated with different pathogenicity of the two viruses in chickens. Collectively, these results indicated that the Pi-11-like virus of pigeon origin has the potential to induce severe outbreaks in chicken flocks. These findings will help us better understand the epidemiology and evolution of PPMV-1 in China and serve as a foundation for the further investigation of the mechanism underlying the pathogenic difference of PPMV-1 isolates in chickens.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Galinhas , China/epidemiologia , Columbidae , Genoma Viral , Doença de Newcastle/epidemiologia , Filogenia , Virulência
19.
Front Vet Sci ; 8: 774630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859093

RESUMO

Both H5N1 and H7N9 subtype avian influenza viruses cause enormous economic losses and pose considerable threats to public health. Bivalent vaccines against both two subtypes are more effective in control of H5N1 and H7N9 viruses in poultry and novel egg-independent vaccines are needed. Herein, H5 and H7 virus like particle (VLP) were generated in a baculovirus expression system and a bivalent H5+H7 VLP vaccine candidate was prepared by combining these two antigens. Single immunization of the bivalent VLP or commercial inactivated vaccines elicited effective antibody immune responses, including hemagglutination inhibition, virus neutralizing and HA-specific IgG antibodies. All vaccinated birds survived lethal challenge with highly pathogenic H5N1 and H7N9 viruses. Furthermore, the bivalent VLP significantly reduced viral shedding and virus replication in chickens, which was comparable to that observed for the commercial inactivated vaccine. However, the bivalent VLP was better than the commercial vaccine in terms of alleviating pulmonary lesions caused by H7N9 virus infection in chickens. Therefore, our study suggests that the bivalent H5+H7 VLP vaccine candidate can serve as a critical alternative for the traditional egg-based inactivated vaccines against H5N1 and H7N9 avian influenza virus infection in poultry.

20.
Virulence ; 12(1): 2443-2460, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517783

RESUMO

A growing body of evidence suggests the pivotal role of long non-coding RNA (lncRNA) in influenza virus infection. Based on next-generation sequencing, we previously demonstrated that Lnc45 was distinctively stimulated by H5N1 influenza virus in mice. In this study, we systematically investigated the specific role of Lnc45 during influenza A virus (IAV) infection. Through qRT-PCR, we first demonstrated that Lnc45 is highly up-regulated by different subtypes of IAV strains, including H5N1, H7N9, and H1N1 viruses. Using RNA-FISH and qRT-PCR, we then found that Lnc45 can translocate from nuclear to cytoplasm during H5N1 virus infection. In addition, forced Lnc45 expression dramatically impeded viral replication of H1N1, H5N1, and H7N9 virus, while abolish of Lnc45 expression by RNA interference favored replication of these viruses, highlighting the potential broad antiviral activity of Lnc45 to IAV. Correspondingly, overexpression of Lnc45 inhibited viral polymerase activity and suppressed IAV-induced cell apoptosis. Moreover, Lnc45 significantly restrained nuclear aggregation of viral NP and PA proteins during H5N1 virus infection. Further functional study revealed that the stem ring arms of Lnc45 mainly mediated the antiviral effect. Therefore, we here demonstrated that Lnc45 functions as a broad-spectrum antiviral factor to inhibit influenza virus replication probably through inhibiting polymerase activity and NP and PA nuclear accumulation via its stem ring arms. Our study not only advances our understanding of the complexity of the IAV pathogenesis but also lays the foundation for developing novel anti-IAV therapeutics targeting the host lncRNA.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , RNA Longo não Codificante , Replicação Viral , Antivirais , Linhagem Celular , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/fisiologia , Subtipo H7N9 do Vírus da Influenza A/fisiologia , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...